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1. Introduction

The study of non-trivial classical solutions of field theories defined in noncommutative (NC)

space-time has attracted much attention during the last years. The case of instantons,

vortices and monopoles has been analyzed in great detail [1, 2]. The analysis of these

type of configurations simplifies for particular relations of coupling constants for which it is

possible to establish the existence of Bogomolnyi-Prassad-Sommerfeld (BPS) equations [3].

For the particular case of vortices in Abelian Higgs model in the noncommutative

plane, the existence of BPS equations was first established in [4]–[6]. As in the commutative

space counterpart [7], no explicit analytical solutions exist. While in ordinary space the

field profiles are found by solving numerically non linear differential equations [7], in NC

space this is done by solving numerically non linear recurrence relations [6].

More recently, BPS equations for the Abelian Higgs Model in a two dimensional torus

in NC space were found in [8]. As in the case of commuting coordinates, the analysis

of solutions to these equations is more complicated than for the planar case due to the

presence of non trivial boundary conditions. A very efficient numerical method was recently

introduced in ordinary space by Gonzalez-Arroyo and Ramos [11]. Guided by this method,

we will address in this paper the problem of constructing numerical solutions of the BPS

equations in the NC torus.

This paper is organized as follows. In section 2 we introduce gauge and scalar fields

defined in the noncommutative two-torus, discuss their boundary conditions, and analyze

how gauge covariant and gauge invariant objects constructed from these fields should be

integrated. The noncommutative Maxwell-Higgs model is introduced in section 3, where the

derivation BPS equations and a Bogomolnyi bound for the energy are recalled [8]. section 4

is devoted to the construction of explicit vortex solutions to the BPS equations, this being

achieved by using both the Moyal and the Fock space approaches for the treatment of

noncommutative systems.

– 1 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
4

2. Fields in the noncommutative torus

We consider noncommutative 2 + 1 dimensional space-time with coordinates satisfying

[x̂, ŷ] = iθ (2.1)

[x̂, t] = [ŷ, t] = 0 , (2.2)

and the space coordinates are defined on a torus, (x̂, ŷ) ⊂ T , the periods of T being

(L1, L2). We shall be interested in a U(1) gauge theory with a Higgs scalar Φ̂ coupled to

gauge fields Âi. The fields transform under the U(1) gauge group according to

Âi → ÂVi = V̂ −1 Âi V̂ +
i

g
V̂ −1 ∂̂i V̂ i = 1, 2 (2.3)

Φ̂ → Φ̂V = V̂ −1 Φ̂ , (2.4)

with V̂ ∈ U(1) and g the gauge coupling constant. The fields are functions of (x̂, ŷ), that is,

they are operators acting on the Fock space generated by eq. (2.1). As we will be looking

for static configurations, the time t, which in our approach is just a parameter, will not play

any role. For definiteness, we will consider scalar fields in the fundamental representation.

The other cases (anti-fundamental, adjoint) can be dealt in a similar way. Here, derivatives

are defined as in the noncommutative plane,

∂̂i =
i

θ
εij [x̂j, ] . (2.5)

As for the ordinary torus, a scalar field on the noncommutative torus will be defined

as a function Φ̂(x̂, ŷ) which is periodic up to gauge transformations. That is,

Φ̂(x̂+ L1, ŷ) = Û1(x̂, ŷ) Φ̂(x̂, ŷ) = Φ̂(U−1
1 )(x̂, ŷ)

Φ̂(x̂, ŷ + L2) = Û2(x̂, ŷ) Φ̂(x̂, ŷ) = Φ̂(U−1
2 )(x̂, ŷ) , (2.6)

where Û1, Û2 ⊂ U(1) are the transition functions. Accordingly, boundary conditions for

gauge fields are

Âi(x̂+ L1, ŷ) = Â
(U−1

1 )
i (x̂, ŷ) (2.7)

Âi(x̂, ŷ + L2) = Â
(U−1

2 )
i (x̂, ŷ) . (2.8)

Consistency of the precedent relations leads to an equation for the U ’s which is, formally,

the same as for the commutative torus,

Û2(x̂+ L1, ŷ) Û1(x̂, ŷ) = Û1(x̂, ŷ + L2) Û2(x̂, ŷ) . (2.9)

A solution of this consistency equations is given by

Û1(x̂, ŷ) = ei π ω L1 ŷ , Û2(x̂, ŷ) = e−i π ω L2 x̂ , (2.10)

– 2 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
4

where

ω =
1

θπ
(1− s) , k ∈ Z

s =
√

1− 2πθk/L1L2 . (2.11)

In the θ → 0 limit, eqs. (2.10)-(2.11) go smoothly to the solution corresponding to the

commutative torus.

Calling Aθ the space of functions defined on T , a generic periodic function f̂(x̂, ŷ) ∈ Aθ
can be written in the form

f̂(x̂, ŷ) =
∑

n1,n2

fn1n2〈n1, n2〉 , (2.12)

where we have introduced

〈n1, n2〉 = exp

(
2πin1

x̂

L1

)
exp

(
2πin2

ŷ

L2

)
. (2.13)

An integration in Aθ, which we shall denote as Tr, can be formally introduced,

I[f ] = TrT f̂(x̂, ŷ) = f00L1L2 . (2.14)

Gauge invariant local objects are periodic in T and integrals of this kind of objects can be

calculated according to this rule. Nevertheless, gauge covariant quantities f̂ c, satisfy

f̂ c(x̂+ L1, ŷ) = Û1(x̂, ŷ) f̂ c(x̂, ŷ) Û−1
1 (x̂, ŷ)

f̂ c(x̂, ŷ + L2) = Û2(x̂, ŷ) f̂ c(x̂, ŷ) Û−1
2 (x̂, ŷ) , (2.15)

and it is simple to show that quantities such as f̂ c are periodic in the scaled torus T̃ with

periods

L̃i = sLi . (2.16)

In this case the functions should be expanded in the basis

〈n1, n2〉∗ = exp

(
2πin1

x̂

L̃1

)
exp

(
2πin2

ŷ

L̃2

)
, (2.17)

and the integral should be understood as

I[f c] = TrT̃ f̂
c(x̂, ŷ) = f c00L̃1L̃2 . (2.18)

In theories defined in NC space, the more natural “local” (i.e, before integration) variables

are covariant quantities (for instance the electromagnetic tensor, the energy density, etc).

We will see then that the scaled torus T̃ plays a fundamental role.

Notice that the trace operation satisfies Tr(f̂ ĝ) = Tr(ĝf̂) and reduces to the standard

integral on T in the commutative limit. One can see that this definition is crucial for

preserving the cyclic property of the integral (trace) which in turn is essential in order

to derive the equations of motion. For example, given two functions Φ̂1(~̂x) and Φ̂2(~̂x)

– 3 –
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satisfying boundary conditions

Φ̂i(x̂+ L1, ŷ) = Û1(x̂, ŷ) Φ̂i(x̂, ŷ)

Φ̂i(x̂, ŷ + L2) = Û2(x̂, ŷ) Φ̂i(x̂, ŷ) , i = 1, 2 , (2.19)

one can see that the product

Φ̂†1(~̂x) Φ̂2(~̂x) (2.20)

is strictly periodic in the torus T , but the transposed product

Φ̂2(~̂x) Φ̂†1(~̂x) , (2.21)

is not periodic in T but in the scaled torus T̃ . Nonetheless, as proved in [8], the cyclic

property of the integral is still valid provided one integrates the first function in T while

the second one in T̃

TrT
(

Φ̂†1(~̂x) Φ̂2(~̂x)
)

= TrT̃

(
Φ̂2(~̂x) Φ̂†1(~̂x)

)
. (2.22)

That is, the cyclic property is preserved with the above definition. In what follows we shall

indistinctly denote the trace operation by Tr assuming that the integrand is expanded in

its natural domain of periodicity.

So far, we have identified the space coordinate algebra defined in eq. (2.1) with the

algebra of creation-annihilation operators in a Fock space, and we have taken fields as

operators Φ̂ in such a Fock space. As in the noncommutative plane, instead of working with

fields depending on noncommuting coordinates x̂i, one can work with ordinary coordinates

xi and introduce a noncommutative ∗ Moyal product

Φ(x) ∗ χ(x) = Φ(x) exp

(
i

2
θµν
←−
∂µ
−→
∂ν

)
χ(x) . (2.23)

The connection between these two formalisms is found via the Weyl connection, an

isomorphism that relates the algebra of functions multiplied with the noncommutative

Moyal product and the algebra of operators in Fock space. For (x, y) ∈ R2 the relation

reads

Φ̂(x̂, ŷ) =

∫
d2k

(2π)2
Φ̃(k1, k2)e−i(k1x̂+k2ŷ)

Φ̂(x̂, ŷ)Ψ̂(x̂, ŷ) = Φ̂ ∗Ψ(x̂, ŷ) , (2.24)

where Φ̃(k1, k2) is the Fourier transformed of field Φ(x, y) defined in ordinary space. This

formula can be easily extended to the torus. Indeed, as we signaled above, any function Φ

which is periodic in a torus T can be Fourier expanded as

Φ(x, y) =
∑

n1,n2

Φ̃n1n2 exp

(
2πin1

x

L1

)
exp

(
2πin2

y

L2

)
. (2.25)

Then, eq. (2.24) valid for R2, is replaced in the torus T by

Φ̂(x̂, ŷ) =
∑

n1,n2

Φ̃n1n2 exp

(
2π2in1n2θ

L1L2

)
〈n1, n2〉 . (2.26)
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The connection between integration in both approaches is
∫
d2x Φ(x, y)→ 2πθ Tr(Φ̂) . (2.27)

The Moyal mapping gives us the possibility to work with commuting coordinates. The

difficulty with this approach is that the resulting expressions (and the equations of motion)

are highly non local quantities in the sense that they involve derivatives of arbitrary order.

As in the case of R2 we will find more convenient to solve the equations of motion in the

Fock space formalism, and use the Moyal correspondence to represent graphically the final

results, by connecting operators with functions defined on configuration space.

3. The Maxwell-Higgs model

We are interested in a model with a U(1) gauge field coupled to a Higgs scalar defined on

the noncommutative torus. Dynamics of the model is governed by the Lagrangian density

L̂ = −1

4
F̂µν F̂

µν + (D̂µΦ̂)† (D̂µΦ̂)− λ (Φ̂†Φ̂− Φ2
0)2 . (3.1)

We are looking for static solutions to the equations of motion and hence we can look for

minima of the energy (per unit length)

E = Tr

(
1

4
F̂ijF̂ij + (D̂iΦ̂)† (D̂iΦ̂) + λ (Φ̂†Φ̂− Φ2

0)2

)
. (3.2)

Here,

D̂iΦ̂ = ∂̂iΦ̂− igÂi Φ̂ (3.3)

is the covariant derivative, and F̂ij is the electromagnetic tensor

F̂ij = ∂̂iÂj − ∂̂jÂi − ig[Âi, Âj ] . (3.4)

Notice that the covariant derivative used in eq. (3.3) corresponds to a Higgs-gauge coupling

which can be considered as in the fundamental representation (other choices are possible).

As in the commutative case, the energy can be rewritten using the Bogomolnyi trick

as [8],

E =Tr

(
1

2
|D̂iΦ̂− iγ εij D̂jΦ̂|2 +

1

4

(
F̂ij − γ g εij(Φ̂ Φ̂† − Φ2

0)
)2

+

(
λ− g2

2

) (
Φ†Φ− Φ0

)2
− γ g

2
Φ2

0 εij F̂ij + total derivative

)
,

(3.5)

where γ = ±1, and ε12 = 1.

Then, choosing coupling constants so that λ = g2/2 (the Bogomolnyi point) one can

establish a BPS bound for the energy

E ≥ −γ g
2

Φ2
0TrT̃ εijF̂ij , (3.6)
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where we have indicated that the trace is taken in the scaled torus τ̃ to stress that F̂ij is a

covariant object. The bound is attained when the following BPS first order equations hold

D̂iΦ̂ = iγ εij D̂jΦ̂

F̂ij = γ g εij(Φ̂ Φ̂† − Φ2
0) . (3.7)

The sign of γ should be chosen in such a way that the bound is positive. For definiteness,

we shall set from here on γ = −1.

In order solve these equations, let us start by observing that boundary conditions (2.8)

together with our choice of transitions functions (2.10) imply for the gauge field the fol-

lowing relations

Â1(x̂+ L̃1, ŷ) = Â1(x̂, ŷ)

Â1(x̂, ŷ + L̃2) = Â1(x̂, ŷ)− 1

g
πωL2

Â2(x̂+ L̃1, ŷ) = Â2(x̂, ŷ) +
1

g
πωL1

Â2(x̂, ŷ + L̃2) = Â2(x̂, ŷ) . (3.8)

A solution can be written as

Âi(x̂, ŷ) = ˆ̃Ai(x̂, ŷ) + âi(x̂, ŷ) , (3.9)

where ˆ̃Ai are some periodic functions in the scaled torus T̃ , and âi chosen as

âi = f εij x̂
j (3.10)

with

f =
1

gθ

(
1− 1

s

)
. (3.11)

The field strength F̂ij can be written as

F̂ij =
1

s
ˆ̃Fij + fij , (3.12)

where

fij = εij
2πk

g

1

L̃1L̃2

(3.13)

and

ˆ̃Fij = ∂̂i
ˆ̃Aj − ∂̂j ˆ̃Ai − i g̃ [ ˆ̃Ai,

ˆ̃Aj ] . (3.14)

Here, we have introduced a scaled charge

g̃ = s g . (3.15)

– 6 –
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Let us now study parameterization (3.9) in connection with gauge transformations,

ÂVi = V̂ −1
(

ˆ̃Ai + âi

)
V̂ +

i

g
V̂ −1 ∂̂i V̂

= V̂ −1 ˆ̃Ai V̂ + f εij V̂
−1 x̂j V̂ +

i

g
V̂ −1 ∂̂i V̂ . (3.16)

Using eq.(2.5) we can rewrite the middle term as a derivative term plus âi

ÂVi = V̂ −1 ˆ̃Ai V̂ − i θf V̂ −1 ∂̂i V̂ + âi +
i

g
V̂ −1 ∂̂i V̂

(3.17)

= V̂ −1 ˆ̃Ai V̂ +
i

g̃
V̂ −1 ∂̂i V̂ + âi . (3.18)

Thus a gauge transformation on Âi is equivalent to a gauge transformation on ˆ̃Ai (keeping

âi untransformed) but using the scaled charge g̃ .

We can summarize these results by stating that, in the analysis of gauge theories in

the torus, one can trade non-trivial boundary conditions in the noncommutative torus T
by periodic boundary conditions and a scaled charge g̃ in a scaled noncommutative torus

T̃ .

Let us now discuss the boundary condition equations for scalar fields. A field Φ̂(x̂, ŷ)

satisfying the boundary conditions (2.6) with transition functions given by eq.(2.10), can

be decomposed as

Φ̂(x̂, ŷ) = M̂−1(x̂, ŷ) χ̂(x̂, ŷ) , (3.19)

where χ̂(x̂, ŷ) will be an explicit function fixed so that it satisfies the same boundary

conditions as Φ̂(x̂, ŷ), and M̂−1(x̂, ŷ), which has periodic boundary conditions on the torus

T̃ , will be found by solving the equations of motion.

Thus χ, must satisfy the conditions

χ̂(x̂+ L1, ŷ) = Û1(x̂, ŷ) χ̂(x̂, ŷ)

χ̂(x̂, ŷ + L2) = Û2(x̂, ŷ) χ̂(x̂, ŷ) . (3.20)

Using complex variables

ẑ = x̂+ iŷ, ¯̂z = x̂− iŷ , (3.21)

a solution can be written as [8]

χ(ẑ, ¯̂z) = N eα2 {ẑ , ẑ−¯̂z}
|k|∏

n=1

θ̂3 (π(ẑ + an)/L1|iL1/L2) . (3.22)

Here θ̂3(ẑ|τ) is the Riemann θ function

θ̂3(ẑ|τ) =
∑

n

eiπτn
2+2inẑ , (3.23)

– 7 –
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the ai are |k| complex constants (which will be associated with the center of the vortices)

satisfying
|k|∑

n=1

an = 0 , (3.24)

and

α = − 1

2θ
log (1− πωθ) = − 1

2θ
log s . (3.25)

In the θ → 0 limit, this function coincides with the one obtained in the commutative case

(see [11]). Note that in the particular case of k = 1, eq. (3.22) simplifies to

χ̂(ẑ, ¯̂z) = N eα2 {ẑ , ẑ−¯̂z} θ̂3 (πẑ/L1|iL1/L2) . (3.26)

Using decomposition (3.9) the BPS equations can be rewritten in the form

ˆ̃Fzz̄ = i
g̃

2

((
Φ2

0 −
2πk

g2L̃1L̃2

)
− Φ̂Φ̂†

)
(3.27)

ˆ̃Dz̄Φ̂ = −π ω
2

Φ̂ ẑ , (3.28)

where
ˆ̃Fẑ ¯̂z = ∂̂z

ˆ̃Az̄ − ∂̂z̄ ˆ̃Az − ig̃
[

ˆ̃Az,
ˆ̃Az̄

]
, (3.29)

and the complex gauge fields are defined as ˆ̃Az =
ˆ̃A1−i ˆ̃A2

2 . Since the fields ˆ̃Ai are periodic

in the scaled torus T̃ , the total flux F of ˆ̃Fij on T̃ vanishes (see equation (2.14)), and then

we have

F = TrT̃ F̂12 = TrT̃ f12 =
2πk

g
. (3.30)

It is easy to see that the ansatz (3.19) automatically satisfies the BPS equation (3.28)

provided that the gauge field is chosen as

ˆ̃Az̄ =
i

g̃
M̂−1∂̂z̄M̂ , (3.31)

where M̂ is a (non unitary) function periodic in T̃ .

Then, it only remains to find N and M̂ appearing in eqs. (3.22)-(3.31) so that the

gauge and scalar fields satisfy the BPS equation (3.27). Defining

Ĥ = M̂ M̂ † , (3.32)

the field strength ˆ̃Fzz̄ can be written as

ˆ̃Fẑ ¯̂z =
i

g̃
M̂−1 Ĥ ∂̂z

(
Ĥ−1∂̂z̄Ĥ

)
M̂ †−1 (3.33)

and eq. (3.27) takes the form

Ĥ ∂̂z

(
Ĥ−1∂̂z̄Ĥ

)
=

1

2
g̃2
(
εĤ − χ̂ χ̂†

)
, (3.34)

– 8 –
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where

ε = Φ2
0 −

2πk

g2L̃1L̃2

. (3.35)

It is convenient at this point to introduce dimensionless fields and variables defined as

Φ̂→ 1

Φ0
Φ̂, Âi →

1√
2Φ0

Âi, x̂i →
√

2gΦ0x̂i , (3.36)

and redefine the parameters

λ→ 2

g2
λ, θ → 2g2Φ2

0θ . (3.37)

With these conventions, the Bogomonlyi point corresponds to λ = 1, and eq. (3.34) becomes

Ĥ ∂̂z

(
Ĥ−1∂̂z̄Ĥ

)
=
s2

4

(
εĤ − χ̂ χ̂†

)
, (3.38)

where we have redefined ε as

ε = 1− 4πk

L̃1L̃2

. (3.39)

In what follows we shall discuss in detail the numerical method used to solve this

equation.

4. Constructing solutions

In order to find solutions to the BPS equations we shall first find Ĥ satisfying eq. (3.38)

and determine N , the Higgs field normalization constant. We first need to compute, within

the operator approach, the Fourier expansion of χ̂χ̂† = N 2η̂η̂†,

η̂η̂† =
∑

n1,n2

ηn1,n2〈n1, n2〉∗ . (4.1)

Notice that the domain of periodicity is T̃ , then the appropriate basis is

〈n1, n2〉∗ = exp

(
2πin1

x̂

sL1

)
exp

(
2πin2

ŷ

sL2

)
. (4.2)

Surprisingly, it is possible to find as in the commutative space case, a closed expression for

this quantity. Indeed, using the definition of η̂ (eq. (3.26) for the single-vortex case k = 1),

and after a long calculation, the coefficients ηn1,n2 (properly normalized as Trτ̃ (η̂η̂†) =

L̃1L̃2) can be written as

ηn1,n2 = (−1)n1n2e
− π

2s2

„
L2

2n
2
1+L2

1n
2
2

L1L2

«

e
2π2in1n2

θ
s2L1L2 . (4.3)

To construct solutions to eq. (3.38) we shall extend the technique described in [11]

for the commutative torus to the noncommutative case. Since for ε = 0 there is a trivial

solution

Ĥ = Constant, N = 0 , (4.4)

– 9 –
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we can use ε as a perturbative parameter and expand Ĥ and the normalization constant

N in powers of ε

Ĥ =

∞∑

k=0

Ĥkε
k, Ĥ−1 =

∞∑

k=0

ˆ̄Hkε
k, N 2 =

∞∑

k=0

Akε
k . (4.5)

Coefficients Ĥk and ˆ̄Hk, are operators periodic in T̃ and can then be Fourier expanded,

Ĥk =
∑

n1,n2

h(k)
n1,n2
〈n1, n2〉∗, ˆ̄Hk =

∑

n1,n2

h̄(k)
n1,n2
〈n1, n2〉∗ . (4.6)

Inserting these expansions in eq. (3.38) one can determine order by order the coefficients,

h(0)
n1,n2

= h̄(0)
n1,n2

=

{
1 n1 = n2 = 0

0 n1 6= 0, n2 6= 0

h(1)
n1,n2

=

{
0 n1 = n2 = 0

πs2 ηn1 ,n2
η0,0

1
|ξn1,n2 |2

n1 6= 0, n2 6= 0

h̄(1)
n1,n2

= −h(1)
n1,n2

, (4.7)

where

ξn1,n2 ≡ π
√
T̃

(
n2√
T̃

+ in1

)
, (4.8)

with T̃ = L̃2/L̃1 the aspect ratio of the scaled torus. In the same way one can calculate

coefficients to any order N in ε

h(N)
n1,n2

=





0 n1 = n2 = 0
C

(A)
n1,n2

−C(B)
n1,n2

−C(C)
n1,n2

|ξn1,n2 |2
n1 6= 0, n2 6= 0

, (4.9)

with

C(A)
q1,q2=

∑

n1,n2

N−1∑

k=1

h̄(k)
n1,n2

h
(N−k)
q1−n1,q2−n2

ξq1,q2 ξ̄q1−n1,q2−n2 exp

(
i
4π2θ

L̃1L̃2

n2(q1 − n1)

)

C(B)
q1,q2=πs

2
∑

n1,n2

N−1∑

k=0

h̄(k)
n1,n2

AN−kηq1−n1,q2−n2 exp

(
i
4π2θ

L̃1L̃2

n2(q1 − n1)

)

C(C)
q1,q2=

∑

n1,n2

N−2∑

k=0

h̄(k)
n1,n2

h
(N−k−1)
q1−n1,q2−n2

ξq1,q2 ξ̄q1−n1,q2−n2 exp

(
i
4π2θ

L̃1L̃2

n2(q1 − n1)

)
.

Coefficients h̄n1,n2 , appearing in the expansion of H−1, are obtained from ĤĤ−1 = 1,

h̄(N)
q1,q2 = −

∑

n1,n2

N∑

k=1

h(k)
n1,n2

h̄
(N−k)
q1−n1,q2−n2

exp
(

4π2in2(q1 − n1)θ/L̃1L̃2

)
. (4.10)
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One also has to find a recurrence relation for the coefficients AN appearing in the

expansion of the Higgs field normalization (eq. (4.5)). For this, one uses the condition

Trτ̃ ( ˆ̃F12) = 0 finding

A0 = 0

A1 =
1

η0,0

AN = − 1

η0,0

∑

n1,n2

N−1∑

k=1

η−n1,−n2 h̄
(k)
n1,n2AN−k exp

(
− i4π

2θ

L̃1L̃2

n1n2

)
, N > 1 .

(4.11)

All these equations can be solved recursively. Assuming M̂ Hermitian, it can be

expanded in powers of ε as well as in Fourier modes, and it is possible from Ĥ = M̂2 to find

recurrence relations for its coefficients. Finally, once the Fourier coefficients of Ĥ, Ĥ−1, M̂ ,

M̂−1 are known, together with the normalization constant N , we can use decompositions

(3.19) and (3.31) to calculate all the fields in Fock space. The Weyl connection for periodic

functions (2.26) can then be used to establish the correspondence between operators Ô(x̂, ŷ)

and their associated functions O(x, y).

Using eq. (3.27) for γ = −1 and the fact that TrT̃
ˆ̃F12 = 0, it follows that

TrT̃

(
Φ2

0 −
2πk

g2L̃1L̃2

)
= TrT̃ Φ̂Φ̂† ≥ 0 . (4.12)

Then

Φ2
0L̃1L̃2 ≥

2πk

g2
, (4.13)

or in terms of the dimensionless variables,

A ≥ 4πk

(
1 +

θ

2

)
≡ Ac . (4.14)

Then, the area A of the torus T has to be larger than the critical value Ac in order for

solutions to exist. eq. (4.14) is the noncommutative extension of the Bradlow limit [12] .

We will focus first on the single-vortex case k = 1, and then make a few comments on

k > 1. For simplicity we will only consider squared torus (L1 = L2). We show in figure (1)

the solution for θ = 2 and A = 100. Being the solutions periodic in T̃ , we have represented

them as a lattice of 9 plaquettes being the vortex solution centered in each plaquette. We

plot both quantities F12 and Φ ∗Φ† (the functions associated through the Weyl connection

to the operators F̂12 and Φ̂Φ̂† in Fock space). For comparison, we also show the solutions

for the same area and θ = 0. In both cases, F12 has a maximum at the center of the torus

(the location of each vortex). Unlike the commutative case, ΦΦ† is different form zero at

that point.

One can study the dependence of the solutions with the area for a fixed θ. We show

in figure (2), F12 for several areas A ≥ Ac = 4πk(1 + θ
2) for a fixed θ = 2. Notice that

for A = 300 the configuration is already similar to the result in the noncommutative plane

– 11 –
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Figure 1: We represent F12 and Φ ∗ Φ† for θ = 0 and θ = 2, for a torus of area A = 100. We

consider 3 × 3 unitary cells, this leading to an array of 9 vortices. The distance among vortices

equals L̃, which explicitly depends on θ. The magnetic flux is always 2πk, so as in the commutative

plane, when incrementing θ, the vortices change conserving this quantity.

Figure 2: We show F12 as a function of x (at y = L̃/2). The critical values θc ' 14 and Ac = 8π

correspond to the (ε→ 0) trivial solutions.

(see ref. [6]). Alternatively, we can fix the area A and study the behavior of the solutions

for different θ ≤ θc = A−4πk
2πk . We show in figure (2) the results for A = 100 and several

values of θ in the range 0 ≤ θ ≤ θc ∼ 14.
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Figure 3: We show B configurations defined on a torus with area A = 100 for θ = 0 (left) and

θ = 2 (right). The main difference with F12 is that it is defined on T , and its magnetic flux depends

on θ.

It is also possible to construct gauge invariant quantities related to the scalar and

gauge fields. Consider for example

Φ̂†Φ̂ = N 2η̂†Ĥ−1η̂ , (4.15)

and the invariant magnetic field B̂ (to be distinguished form the covariant one F̂12)

B̂ ≡ (Φ̂†Φ̂)−1(Φ̂†F̂12Φ̂) = (Φ̂†F̂12Φ̂)(Φ̂†Φ̂)−1 =
1

2
(1− Φ̂†Φ̂) . (4.16)

In the θ → 0 limit, both quantities reduce to their analogues in commutative space. The

flux of B̂ across the torus now depends on θ

Trτ (B̂) = 2π

(
1 +

θ

2

)
k . (4.17)

We show in figure (3), B configurations in the same conditions of figure (1). As it is gauge

invariant, it is defined on the same torus T for all values of θ (see figure (4)).

We can also consider negative values for the noncommutative parameter θ. As the

equations remain unchanged when the following quantities are redefined as

γ → −γ , x2 → −x2 , A2 → −A2 , θ → −θ , k → −k ,

this is equivalent to study solutions of the anti-self dual equations (this is, BPS eqs. (3.27)-

(3.28) with γ = 1) but with positive θ parameter.

In the noncommutative plane, it has been shown that there exists a critical value θ∗
such that for θ < θ∗ no solutions to the self-dual equations exist [5, 10]. In the units used

in this paper, in the planer case this corresponds to θ∗ = −2. The question that arises is

if such θ∗ exists also in the NC torus and if it depends on the area.

We have analyzed this problem numerically and we could not make the method to

converge for θ < −2, irrespectively of the value of the area. This is completely analogous

to what happens in the noncommutative plane [5, 6, 9, 10], indicating that θ∗ = −2 also for

– 13 –
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Figure 4: Upper views of B on a torus with area A = 100, for different values of θ. When

θ → θc ' 14, B → 1
2 .

the torus. Thus, we have been able to find solutions of the self-dual equations θ∗ < θ < θc.

Incidentally, notice that for θ = θ∗, the critical area is zero. The case of anti-self dual

equations can be considered using the transformation mentioned above.

It is also possible to obtain solutions for k = 2 and higher. In such cases we do not

have closed expressions for the Fourier coefficients of η̂η̂†, but numerical calculations are

straightforward. As an example, we show in figure (5) F12 and upper views of B for both

θ = 0 and θ = 2.

Finally, let us say a few words about the efficiency of the method. In order to analyze

the accuracy of the algorithm, we have rewritten eq. (3.38), as

1

ε

[
H−1N 2ηη† +

4

s2
∂z
[
H−1∂z̄H

]]
= 1 , (4.18)

and verified that the fourier coefficients Aq1,q2 of the LHS of this expression

Aq1,q2 =
1

ε

∑

n1,n2

e
i4πn2(q1−n1) θ

L̃1L̃2

[
N 2h̄n1,n2hq1−n1,q2−n2 + (4.19)

+
4

s2
h̄q1−n1,q2−n2hn1,n2 ξ̄q1−n1,q2−n2ξq1,q2

]
,

satisfy ∑

q1,q2

| Aq1,q2 − δq1,q2 |< 10−p (4.20)

for a given p. This is attained by increasing the number of Fourier coefficients and the

order of the perturbative expansion in ε. The same was done for the ĤĤ−1 = 1 constrain,

and for other relevant equations.

Convergence is slower for large area A ∼ 20Ac because, as solutions are more locali-

zed, more Fourier coefficients are needed, and besides, ε ' 1. For instance, in this case

a convergence for p = 3 is achieved with 441 Fourier modes, and N = 300 orders of the
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Figure 5: In the left we represent a two-vortex configuration of F12 for a torus with area A = 300,

both for θ = 0 and θ = 2. The distance between vortices was fixed to 0.3L. In the right we show

upper views of B in the same conditions.

expansion (this demands about 72 hours in a standard PC). As the area is reduced, the

time of computation is considerably lower, being of about 20 seconds for ε ' 0.

As an independent test, we have also calculated the magnetic flux and energy using

the solutions and compared the results with the analytical values finding an agreement

better than (∼ 10−4).
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